Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Front Immunol ; 13: 947021, 2022.
Article in English | MEDLINE | ID: covidwho-2316385

ABSTRACT

SARS-CoV-2 Omicron infections are common among individuals who are vaccinated or have recovered from prior variant infection, but few reports have immunologically assessed serial Omicron infections. We characterized SARS-CoV-2 humoral responses in an individual who acquired laboratory-confirmed Omicron BA.1.15 ten weeks after a third dose of BNT162b2, and BA.2 thirteen weeks later. Responses were compared to 124 COVID-19-naive vaccinees. One month post-second and -third vaccine doses, the participant's wild-type and BA.1-specific IgG, ACE2-displacement and virus neutralization activities were average for a COVID-19-naive triple-vaccinated individual. BA.1 infection boosted the participant's responses to the cohort ≥95th percentile, but even this strong "hybrid" immunity failed to protect against BA.2. Reinfection increased BA.1 and BA.2-specific responses only modestly. Though vaccines clearly protect against severe disease, results highlight the continued importance of maintaining additional protective measures to counteract the immune-evasive Omicron variant, particularly as vaccine-induced immune responses naturally decline over time.


Subject(s)
COVID-19 , Viral Vaccines , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , SARS-CoV-2 , Vaccination
2.
J Infect Dis ; 2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-2298463

ABSTRACT

BACKGROUND: Longer-term humoral responses to two-dose COVID-19 vaccines remain incompletely characterized in people living with HIV (PLWH), as do initial responses to a third dose. METHODS: We measured antibodies against the SARS-CoV-2 spike protein receptor-binding domain, ACE2 displacement and viral neutralization against wild-type and Omicron strains up to six months following two-dose vaccination, and one month following the third dose, in 99 PLWH receiving suppressive antiretroviral therapy, and 152 controls. RESULTS: Though humoral responses naturally decline following two-dose vaccination, we found no evidence of lower antibody concentrations nor faster rates of antibody decline in PLWH compared to controls after accounting for sociodemographic, health and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after two doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though Omicron-specific responses were consistently weaker than against wild-type. Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. CONCLUSION: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after two- and three-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.

3.
Frontiers in microbiology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2280173

ABSTRACT

The real-time polymerase chain reaction (PCR), commonly known as quantitative PCR (qPCR), is increasingly common in environmental microbiology applications. During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and wastewater monitoring of local trends. Estimation of concentrations using qPCR often features a log-linear standard curve model calibrating quantification cycle (Cq) values obtained from underlying fluorescence measurements to standard concentrations. This process works well at high concentrations within a linear dynamic range but has diminishing reliability at low concentrations because it cannot explain "non-standard” data such as Cq values reflecting increasing variability at low concentrations or non-detects that do not yield Cq values at all. Here, fundamental probabilistic modeling concepts from classical quantitative microbiology were integrated into standard curve modeling approaches by reflecting well-understood mechanisms for random error in microbial data. This work showed that data diverging from the log-linear regression model at low concentrations as well as non-detects can be seamlessly integrated into enhanced standard curve analysis. The newly developed model provides improved representation of standard curve data at low concentrations while converging asymptotically upon conventional log-linear regression at high concentrations and adding no fitting parameters. Such modeling facilitates exploration of the effects of various random error mechanisms in experiments generating standard curve data, enables quantification of uncertainty in standard curve parameters, and is an important step toward quantifying uncertainty in qPCR-based concentration estimates. Improving understanding of the random error in qPCR data and standard curve modeling is especially important when low concentrations are of particular interest and inappropriate analysis can unduly affect interpretation, conclusions regarding lab performance, reported concentration estimates, and associated decision-making.

4.
AIDS ; 37(5): 709-721, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2267958

ABSTRACT

BACKGROUND: Limited data exist regarding longer term antibody responses following three-dose coronavirus disease 2019 (COVID-19) vaccination, and the impact of a first SARS-CoV-2 infection during this time, in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). We quantified wild-type-specific, Omicron BA.1-specific and Omicron BA.5-specific responses up to 6 months post-third dose in 64 PWH and 117 controls who remained COVID-19-naive or experienced their first SARS-CoV-2 infection during this time. DESIGN: Longitudinal observational cohort. METHODS: We quantified wild-type-specific and Omicron-specific anti-Spike receptor-binding domain IgG concentrations, ACE2 displacement activities and live virus neutralization at 1, 3 and 6 months post-third vaccine dose. RESULTS: Third doses boosted all antibody measures above two-dose levels, but BA.1-specific responses remained significantly lower than wild-type-specific ones, with BA.5-specific responses lower still. Serum IgG concentrations declined at similar rates in COVID-19-naive PWH and controls post-third dose (median wild-type-specific and BA.1-specific half-lives were between 66 and 74 days for both groups). Antibody function also declined significantly yet comparably between groups: 6 months post-third dose, BA.1-specific neutralization was undetectable in more than 80% of COVID-19 naive PWH and more than 90% of controls. Breakthrough SARS-CoV-2 infection boosted antibody concentrations and function significantly above vaccine-induced levels in both PWH and controls, though BA.5-specific neutralization remained significantly poorer than BA.1 even post-breakthrough. CONCLUSION: Following three-dose COVID-19 vaccination, antibody response durability in PWH receiving ART is comparable with controls. PWH also mounted strong responses to breakthrough infection. Due to temporal response declines, however, COVID-19-naive individuals, regardless of HIV status, would benefit from a fourth dose within 6 months of their third.


Subject(s)
COVID-19 , HIV Infections , Humans , Antibody Formation , COVID-19 Vaccines , COVID-19/prevention & control , HIV Infections/complications , HIV Infections/drug therapy , SARS-CoV-2 , Vaccination , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
5.
Open Forum Infect Dis ; 10(3): ofad073, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2273426

ABSTRACT

Background: Longer-term immune response data after 3 doses of coronavirus disease 2019 (COVID-19) mRNA vaccine remain limited, particularly among older adults and after Omicron breakthrough infection. Methods: We quantified wild-type- and Omicron-specific serum immunoglobulin (Ig)G levels, angiotensin-converting enzyme 2 displacement activities, and live virus neutralization up to 6 months after third dose in 116 adults aged 24-98 years who remained COVID-19 naive or experienced their first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during this time. Results: Among the 78 participants who remained COVID-19 naive throughout follow up, wild-type- and Omicron-BA.1-specific IgG concentrations were comparable between younger and older adults, although BA.1-specific responses were consistently significantly lower than wild-type-specific responses in both groups. Wild-type- and BA.1-specific IgG concentrations declined at similar rates in COVID-19-naive younger and older adults, with median half-lives ranging from 69 to 78 days. Antiviral antibody functions declined substantially over time in COVID-19-naive individuals, particularly in older adults: by 6 months, BA.1-specific neutralization was undetectable in 96% of older adults, versus 56% of younger adults. Severe acute respiratory syndrome coronavirus 2 infection, experienced by 38 participants, boosted IgG levels and neutralization above those induced by vaccination alone. Nevertheless, BA.1-specific neutralization remained significantly lower than wild-type, with BA.5-specific neutralization lower still. Higher Omicron BA.1-specific neutralization 1 month after third dose was an independent correlate of lower SARS-CoV-2 infection risk. Conclusions: Results underscore the immune benefits of the third COVID-19 mRNA vaccine dose in adults of all ages and identify vaccine-induced Omicron-specific neutralization as a correlate of protective immunity. Systemic antibody responses and functions however, particularly Omicron-specific neutralization, decline rapidly in COVID-19-naive individuals, particularly in older adults, supporting the need for additional booster doses.

6.
Front Microbiol ; 14: 1048661, 2023.
Article in English | MEDLINE | ID: covidwho-2280174

ABSTRACT

The real-time polymerase chain reaction (PCR), commonly known as quantitative PCR (qPCR), is increasingly common in environmental microbiology applications. During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and wastewater monitoring of local trends. Estimation of concentrations using qPCR often features a log-linear standard curve model calibrating quantification cycle (Cq) values obtained from underlying fluorescence measurements to standard concentrations. This process works well at high concentrations within a linear dynamic range but has diminishing reliability at low concentrations because it cannot explain "non-standard" data such as Cq values reflecting increasing variability at low concentrations or non-detects that do not yield Cq values at all. Here, fundamental probabilistic modeling concepts from classical quantitative microbiology were integrated into standard curve modeling approaches by reflecting well-understood mechanisms for random error in microbial data. This work showed that data diverging from the log-linear regression model at low concentrations as well as non-detects can be seamlessly integrated into enhanced standard curve analysis. The newly developed model provides improved representation of standard curve data at low concentrations while converging asymptotically upon conventional log-linear regression at high concentrations and adding no fitting parameters. Such modeling facilitates exploration of the effects of various random error mechanisms in experiments generating standard curve data, enables quantification of uncertainty in standard curve parameters, and is an important step toward quantifying uncertainty in qPCR-based concentration estimates. Improving understanding of the random error in qPCR data and standard curve modeling is especially important when low concentrations are of particular interest and inappropriate analysis can unduly affect interpretation, conclusions regarding lab performance, reported concentration estimates, and associated decision-making.

7.
Microb Genom ; 9(1)2023 01.
Article in English | MEDLINE | ID: covidwho-2230369

ABSTRACT

Pathogen genomics is a critical tool for public health surveillance, infection control, outbreak investigations as well as research. In order to make use of pathogen genomics data, they must be interpreted using contextual data (metadata). Contextual data include sample metadata, laboratory methods, patient demographics, clinical outcomes and epidemiological information. However, the variability in how contextual information is captured by different authorities and how it is encoded in different databases poses challenges for data interpretation, integration and their use/re-use. The DataHarmonizer is a template-driven spreadsheet application for harmonizing, validating and transforming genomics contextual data into submission-ready formats for public or private repositories. The tool's web browser-based JavaScript environment enables validation and its offline functionality and local installation increases data security. The DataHarmonizer was developed to address the data sharing needs that arose during the COVID-19 pandemic, and was used by members of the Canadian COVID Genomics Network (CanCOGeN) to harmonize SARS-CoV-2 contextual data for national surveillance and for public repository submission. In order to support coordination of international surveillance efforts, we have partnered with the Public Health Alliance for Genomic Epidemiology to also provide a template conforming to its SARS-CoV-2 contextual data specification for use worldwide. Templates are also being developed for One Health and foodborne pathogens. Overall, the DataHarmonizer tool improves the effectiveness and fidelity of contextual data capture as well as its subsequent usability. Harmonization of contextual information across authorities, platforms and systems globally improves interoperability and reusability of data for concerted public health and research initiatives to fight the current pandemic and future public health emergencies. While initially developed for the COVID-19 pandemic, its expansion to other data management applications and pathogens is already underway.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , SARS-CoV-2/genetics , Canada , Genomics/methods
8.
Clin Infect Dis ; 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2230798

ABSTRACT

BACKGROUND: In late 2021, the Omicron SARS-CoV-2 variant emerged and rapidly replaced Delta as the dominant variant globally. The increased transmissibility of the variant led to surges in case rates as well as increases in hospitalizations, however, the true severity of the variant remained unclear. We aimed to provide robust estimates of Omicron severity relative to Delta. METHODS: This study was conducted using a retrospective cohort design with data from the British Columbia COVID-19 Cohort - a large provincial surveillance platform with linkage to administrative datasets. To capture the time of co-circulation with Omicron and Delta, December 2021 was chosen as the study period. We included individuals diagnosed with Omicron or Delta infection, as determined by whole genome sequencing (WGS). To assess the severity (hospitalization, ICU admission, length of stay), we conducted adjusted Cox proportional hazard models, weighted by inverse probability of treatment weights (IPTW), accounting for age, sex, underlying comorbidities, vaccination, sociodemographic status, and geographical variation. RESULTS: The cohort was composed of 13,128 individuals (7,729 Omicron and 5,399 Delta). There were 419 COVID-19 hospitalizations, with 118 (22%) among people diagnosed with Omicron (crude rate = 1.5% Omicron, 5.6% Delta). In multivariable IPTW analysis, Omicron was associated with a 50% lower risk of hospitalization compared to Delta (aHR = 0.50; 95%CI = 0·43-0.59), a 73% lower risk of ICU admission (aHR = 0.27; 95%CI = 0.19-0.38), and a 5 days shorter hospital stay on average (aß=-5.03; 95% CI=-8.01, -2.05). CONCLUSIONS: Our analysis supports findings from other studies demonstrating lower risk of severe outcomes in Omicron-infected individuals relative to Delta.

9.
Antimicrobial Stewardship and Healthcare Epidemiology ; 2(S1):s38, 2022.
Article in English | ProQuest Central | ID: covidwho-2184954

ABSTRACT

Background: Many healthcare facilities have faced the decision of conducting point prevalence testing (PPT) of healthcare workers (HCW) during COVID-19 outbreaks. As a containment strategy, PPT can identify asymptomatic or presymptomatic cases for isolation. It is less clear how useful testing asymptomatic HCW is in understanding the spread and possible routes of transmission in an outbreak. This study investigated HCW cases identified through PPT during acute-care outbreaks in Fraser Health (FH), British Columbia, incorporating both epidemiological and whole-genome sequencing (WGS) data to determine their epidemiological source. Methods: This study was a retrospective review of cases associated with COVID-19 acute-care outbreaks in FH occurring between December 2020 and June 2021, when most of these infections were of the alpha and gamma lineages. All patients and HCWs with a positive COVID-19 test and epidemiologically linked to the outbreaks were included in the study. WGS results supported determination of epidemiological source for cases. The proportion of patient and HCW cases related to the outbreak was compared. All analyses were conducted using SAS version 4.3 software with the PROC GLM package. Results: Between December 2020 and June 2021, 49 acute-care COVID-19 outbreaks were declared. Point-prevalence testing of HCWs, in addition to routine patient PPT, was conducted in 28 outbreaks (57%), with 2,167 eligible HCWs (63%) tested. Testing identified 14 previously unknown HCW cases, representing 12.96% of all HCW cases epidemiologically linked to the outbreaks. None of these HCWs were determined to be the index case for their associated outbreak. There was no statistically significant difference between HCWs and patients regarding WGS failure rate, and all failed samples were removed from further analysis. Patients were 3.8 times as likely as HCWs to present as symptomatic when testing positive. HCWs were 2.2 times as likely as patients to have WGS results unrelated to the outbreak. Discussion: Although point-prevalence testing of HCW identified previously unknown cases, these cases were more likely than patients to be unrelated to the outbreak and therefore less useful in understanding the epidemiology of the outbreak. It is difficult to determine whether HCW PPT was effective at preventing transmission, especially with robust infection prevention measures already in place. Patients were more likely than HCWs to present as asymptomatic, however this may be due to the attribution of symptoms to other conditions. Conclusions: Point prevalence testing of HCWs during COVID-19 outbreaks may assist with preventing transmission but is less likely to contribute meaningful information to the investigation.Funding: NoneDisclosures: None

10.
J Med Virol ; 95(1): e28423, 2023 01.
Article in English | MEDLINE | ID: covidwho-2173203

ABSTRACT

The SARS-CoV-2 variant Omicron emerged in late 2021. In British Columbia (BC), Canada, and globally, three genetically distinct subvariants of Omicron, BA.1, BA.2, and BA.5, emerged and became dominant successively within an 8-month period. SARS-CoV-2 subvariants continue to circulate in the population, acquiring new mutations that have the potential to alter infectivity, immunity, and disease severity. Here, we report a propensity-matched severity analysis from residents of BC over the course of the Omicron wave, including 39,237 individuals infected with BA.1, BA.2, or BA.5 based on paired high-quality sequence data and linked to comprehensive clinical outcomes data between December 23, 2021 and August 31, 2022. Relative to BA.1, BA.2 cases were associated with a 15% and 28% lower risk of hospitalization and intensive care unit (ICU) admission (aHRhospital = 1.17; 95% confidence interval [CI] = 1.096-1.252; aHRICU = 1.368; 95% CI = 1.152-1.624), whereas BA.5 infections were associated with an 18% higher risk of hospitalization (aHRhospital = 1.18; 95% CI = 1.133-1.224) after accounting for age, sex, comorbidities, vaccination status, geography, and social determinants of health. Phylogenetic analysis revealed no specific subclades associated with more severe clinical outcomes for any Omicron subvariant. In summary, BA.1, BA.2, and BA.5 subvariants were associated with differences in clinical severity, emphasizing how variant-specific monitoring programs remain critical components of patient and population-level public health responses as the pandemic continues.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , British Columbia/epidemiology , SARS-CoV-2/genetics , Cohort Studies , Phylogeny , COVID-19/epidemiology
11.
Int J Environ Res Public Health ; 20(2)2023 Jan 10.
Article in English | MEDLINE | ID: covidwho-2200080

ABSTRACT

Throughout the COVID-19 pandemic, numerous non-human species were shown to be susceptible to natural infection by SARS-CoV-2, including farmed American mink. Once infected, American mink can transfer the virus from mink to human and mink to mink, resulting in a high rate of viral mutation. Therefore, outbreak surveillance on American mink farms is imperative for both mink and human health. Historically, disease surveillance on mink farms has consisted of a combination of mortality and live animal sampling; however, these methodologies have significant limitations. This study compared PCR testing of both deceased and live animal samples to environmental samples on an active outbreak premise, to determine the utility of environmental sampling. Environmental sampling mirrored trends in both deceased and live animal sampling in terms of percent positivity and appeared more sensitive in some low-prevalence instances. PCR CT values of environmental samples were significantly different from live animal samples' CT values and were consistently high (mean CT = 36.2), likely indicating a low amount of viral RNA in the samples. There is compelling evidence in favour of environmental sampling for the purpose of disease surveillance, specifically as an early warning tool for SARS-CoV-2; however, further work is needed to ultimately determine whether environmental samples are viable sources for molecular epidemiology investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Mink , Pandemics , Polymerase Chain Reaction
12.
Elife ; 112022 11 08.
Article in English | MEDLINE | ID: covidwho-2110897

ABSTRACT

Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.


Subject(s)
COVID-19 , Chiroptera , Animals , Phylogeny , Genetic Variation , Sequence Analysis, DNA , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Genomics
13.
Viruses ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2099850

ABSTRACT

BACKGROUND: Investigating antibody titers in individuals who have been both naturally infected with SARS-CoV-2 and vaccinated can provide insight into antibody dynamics and correlates of protection over time. METHODS: Human coronavirus (HCoV) IgG antibodies were measured longitudinally in a prospective cohort of qPCR-confirmed, COVID-19 recovered individuals (k = 57) in British Columbia pre- and post-vaccination. SARS-CoV-2 and endemic HCoV antibodies were measured in serum collected between Nov. 2020 and Sept. 2021 (n = 341). Primary analysis used a linear mixed-effects model to understand the effect of single dose vaccination on antibody concentrations adjusting for biological sex, age, time from infection and vaccination. Secondary analysis investigated the cumulative incidence of high SARS-CoV-2 anti-spike IgG seroreactivity equal to or greater than 5.5 log10 AU/mL up to 105 days post-vaccination. No re-infections were detected in vaccinated participants, post-vaccination by qPCR performed on self-collected nasopharyngeal specimens. RESULTS: Bivariate analysis (complete data for 42 participants, 270 samples over 472 days) found SARS-CoV-2 spike and RBD antibodies increased 14-56 days post-vaccination (p < 0.001) and vaccination prevented waning (regression coefficient, B = 1.66 [95%CI: 1.45-3.46]); while decline of nucleocapsid antibodies over time was observed (regression coefficient, B = -0.24 [95%CI: -1.2-(-0.12)]). A positive association was found between COVID-19 vaccination and endemic human ß-coronavirus IgG titer 14-56 days post vaccination (OC43, p = 0.02 & HKU1, p = 0.02). On average, SARS-CoV-2 anti-spike IgG concentration increased in participants who received one vaccine dose by 2.06 log10 AU/mL (95%CI: 1.45-3.46) adjusting for age, biological sex, and time since infection. Cumulative incidence of high SARS-CoV-2 spike antibodies (>5.5 log10 AU/mL) was 83% greater in vaccinated compared to unvaccinated individuals. CONCLUSIONS: Our study confirms that vaccination post-SARS-CoV-2 infection provides multiple benefits, such as increasing anti-spike IgG titers and preventing decay up to 85 days post-vaccination.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Antibody Formation , SARS-CoV-2 , Prospective Studies , COVID-19 Vaccines , Antibodies, Viral , Vaccination , Immunoglobulin G
14.
BMC Genomics ; 23(1): 710, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2079392

ABSTRACT

BACKGROUND: The COVID-19 pandemic remains a global public health concern. Advances in sequencing technologies has allowed for high numbers of SARS-CoV-2 whole genome sequence (WGS) data and rapid sharing of sequences through global repositories to enable almost real-time genomic analysis of the pathogen. WGS data has been used previously to group genetically similar viral pathogens to reveal evidence of transmission, including methods that identify distinct clusters on a phylogenetic tree. Identifying clusters of linked cases can aid in the regional surveillance and management of the disease. In this study, we present a novel method for producing stable genomic clusters of SARS-CoV-2 cases, cov2clusters, and compare the accuracy and stability of our approach to previous methods used for phylogenetic clustering using real-world SARS-CoV-2 sequence data obtained from British Columbia, Canada. RESULTS: We found that cov2clusters produced more stable clusters than previously used phylogenetic clustering methods when adding sequence data through time, mimicking an increase in sequence data through the pandemic. Our method also showed high accuracy when predicting epidemiologically informed clusters from sequence data. CONCLUSIONS: Our new approach allows for the identification of stable clusters of SARS-CoV-2 from WGS data. Producing high-resolution SARS-CoV-2 clusters from sequence data alone can a challenge and, where possible, both genomic and epidemiological data should be used in combination.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , COVID-19/epidemiology , Phylogeny , Genome, Viral , Genomics , Cluster Analysis
15.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2034121

ABSTRACT

SARS-CoV-2 Omicron infections are common among individuals who are vaccinated or have recovered from prior variant infection, but few reports have immunologically assessed serial Omicron infections. We characterized SARS-CoV-2 humoral responses in an individual who acquired laboratory-confirmed Omicron BA.1.15 ten weeks after a third dose of BNT162b2, and BA.2 thirteen weeks later. Responses were compared to 124 COVID-19-naive vaccinees. One month post-second and -third vaccine doses, the participant’s wild-type and BA.1-specific IgG, ACE2-displacement and virus neutralization activities were average for a COVID-19-naive triple-vaccinated individual. BA.1 infection boosted the participant’s responses to the cohort ≥95th percentile, but even this strong “hybrid” immunity failed to protect against BA.2. Reinfection increased BA.1 and BA.2-specific responses only modestly. Though vaccines clearly protect against severe disease, results highlight the continued importance of maintaining additional protective measures to counteract the immune-evasive Omicron variant, particularly as vaccine-induced immune responses naturally decline over time.

16.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1939982

ABSTRACT

Background COVID-19 vaccination is a key public health measure in the pandemic response. The rapid evolution of SARS-CoV-2 variants introduce new groups of spike protein mutations. These new mutations are thought to aid in the evasion of vaccine-induced immunity and render vaccines less effective. However, not all spike mutations contribute equally to vaccine escape. Previous studies associate mutations with vaccine breakthrough infections (BTI), but information at the population level remains scarce. We aimed to identify spike mutations associated with SARS-CoV-2 vaccine BTI in a community setting during the emergence and predominance of the Delta-variant. Methods This case-control study used both genomic, and epidemiological data from a provincial COVID-19 surveillance program. Analyses were stratified into two periods approximating the emergence and predominance of the Delta-variant, and restricted to primary SARS-CoV-2 infections from either unvaccinated individuals, or those infected ≥14 days after their second vaccination dose in a community setting. Each sample's spike mutations were concatenated into a unique spike mutation profile (SMP). Penalized logistic regression was used to identify spike mutations and SMPs associated with SARS-CoV-2 vaccine BTI in both time periods. Results and Discussion This study reports population level relative risk estimates, between 2 and 4-folds, of spike mutation profiles associated with BTI during the emergence and predominance of the Delta-variant, which comprised 19,624 and 17,331 observations, respectively. The identified mutations cover multiple spike domains including the N-terminal domain (NTD), receptor binding domain (RBD), S1/S2 cleavage region, fusion peptide and heptad regions. Mutations in these different regions imply various mechanisms contribute to vaccine escape. Our profiling method identifies naturally occurring spike mutations associated with BTI, and can be applied to emerging SARS-CoV-2 variants with novel groups of spike mutations.

17.
Can J Public Health ; 113(5): 653-664, 2022 10.
Article in English | MEDLINE | ID: covidwho-1934761

ABSTRACT

OBJECTIVES: To determine the extent and characteristics of in-school transmission of SARS-CoV-2 and determine risk factors for in-school acquisition of COVID-19 in one of Canada's largest school districts. METHODS: We conducted a retrospective chart review of all reportable cases of COVID-19 who attended a kindergarten-Grade 12 (K-12) school within the study area between January and June of the 2020-2021 school year. The acquisition source was inferred based on epidemiological data and, when available, whole genome sequencing results. Mixed effects logistic regression was performed to identify risk factors independently associated with in-school acquisition of COVID-19. RESULTS: Overall, 2877 cases of COVID-19 among staff and students were included in the analysis; of those, 9.1% had evidence of in-school acquisition. The median cluster size was two cases (interquartile range: 1). Risk factors for in-school acquisition included being male (adjusted odds ratio [aOR]: 1.59, 95% confidence interval [CI]: 1.17-2.17), being a staff member (aOR: 2.62, 95% CI: 1.64-4.21) and attending or working in an independent school (aOR: 2.28, 95% CI: 1.13-4.62). CONCLUSION: In-school acquisition of COVID-19 was uncommon during the study period. Risk factors were identified in order to support the implementation of mitigation strategies that can reduce transmission further.


RéSUMé: OBJECTIFS: Déterminer l'étendue et les caractéristiques de la transmission de la SRAS-CoV-2 en milieu scolaire, et déterminer les facteurs de risque de l'acquisition de la COVID-19 dans l'un des plus larges arrondissements scolaires du Canada. MéTHODES: Nous avons mené un examen rétrospectif des dossiers de tous les cas signalés de COVID-19 ayant fréquenté une école de niveau élémentaire, primaire ou secondaire dans la zone à l'étude entre janvier et juin de l'année scolaire 2020-2021. La source d'acquisition était inférée sur la base des données épidémiologiques et, lorsque disponibles, les résultats de séquençage du génome entier. Nous avons eu recours à des régressions logistiques multiniveaux pour identifier les facteurs indépendamment associés avec l'acquisition de la COVID-19 en milieu scolaire. RéSULTATS: Au total, 2 877 cas de COVID-19 parmi les employés et les élèves ont été inclus dans l'analyse; de ceux-ci, 9,1 % avaient acquis l'infection en milieu scolaire. La grosseur médiane des agrégats était de deux cas (écart interquartile : 1). Les risques facteurs de l'acquisition en milieu scolaire incluaient le fait d'être de sexe masculin (rapport de cotes ajusté [RCa] : 1,59, intervalle de confiance [IC] de 95% : 1,17-2,17), être un membre du personnel (RCa : 2,62, IC de 95% : 1,64-4,21) et fréquenter ou travailler dans une école indépendante (RCa : 2,28, IC de 95% : 1,13-4,62). CONCLUSION: Nos résultats suggèrent que l'acquisition de la COVID-19 en milieu scolaire était peu commune pendant la période d'étude. Des facteurs de risque ont été identifiés afin de supporter l'implémentation de mesures de contrôle pouvant réduire davantage la transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , British Columbia/epidemiology , COVID-19/epidemiology , Female , Humans , Male , Retrospective Studies , Schools
18.
Clin Infect Dis ; 75(11): 1980-1992, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-1927303

ABSTRACT

BACKGROUND: The Canadian coronavirus disease 2019 (COVID-19) immunization strategy deferred second doses and allowed mixed schedules. We compared 2-dose vaccine effectiveness (VE) by vaccine type (mRNA and/or ChAdOx1), interval between doses, and time since second dose in 2 of Canada's larger provinces. METHODS: Two-dose VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or hospitalization among adults ≥18 years, including due to Alpha, Gamma, and Delta variants of concern (VOCs), was assessed ≥14 days postvaccination by test-negative design studies separately conducted in British Columbia and Quebec, Canada, between 30 May and 27 November (epi-weeks 22-47) 2021. RESULTS: In both provinces, all homologous or heterologous mRNA and/or ChAdOx1 2-dose schedules were associated with ≥90% reduction in SARS-CoV-2 hospitalization risk for ≥7 months. With slight decline from a peak of >90%, VE against infection was ≥80% for ≥6 months following homologous mRNA vaccination, lower by ∼10% when both doses were ChAdOx1 but comparably high following heterologous ChAdOx1 + mRNA receipt. Findings were similar by age group, sex, and VOC. VE was significantly higher with longer 7-8-week versus manufacturer-specified 3-4-week intervals between mRNA doses. CONCLUSIONS: Two doses of any mRNA and/or ChAdOx1 combination gave substantial and sustained protection against SARS-CoV-2 hospitalization, spanning Delta-dominant circulation. ChAdOx1 VE against infection was improved by heterologous mRNA series completion. A 7-8-week interval between first and second doses improved mRNA VE and may be the optimal schedule outside periods of intense epidemic surge. Findings support interchangeability and extended intervals between SARS-CoV-2 vaccine doses, with potential global implications for low-coverage areas and, going forward, for children.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , British Columbia/epidemiology , Quebec/epidemiology , COVID-19 Vaccines , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , RNA, Messenger
19.
Emerg Infect Dis ; 28(6): 1154-1162, 2022 06.
Article in English | MEDLINE | ID: covidwho-1892584

ABSTRACT

We tested swab specimens from pets in households in Ontario, Canada, with human COVID-19 cases by quantitative PCR for SARS-CoV-2 and surveyed pet owners for risk factors associated with infection and seropositivity. We tested serum samples for spike protein IgG and IgM in household pets and also in animals from shelters and low-cost neuter clinics. Among household pets, 2% (1/49) of swab specimens from dogs and 7.7% (5/65) from cats were PCR positive, but 41% of dog serum samples and 52% of cat serum samples were positive for SARS-CoV-2 IgG or IgM. The likelihood of SARS-CoV-2 seropositivity in pet samples was higher for cats but not dogs that slept on owners' beds and for dogs and cats that contracted a new illness. Seropositivity in neuter-clinic samples was 16% (35/221); in shelter samples, 9.3% (7/75). Our findings indicate a high likelihood for pets in households of humans with COVID-19 to seroconvert and become ill.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dogs , Immunoglobulin G , Immunoglobulin M , Ontario/epidemiology , Pets , Risk Factors , SARS-CoV-2
20.
J Infect Dis ; 226(6): 983-994, 2022 09 21.
Article in English | MEDLINE | ID: covidwho-1840054

ABSTRACT

BACKGROUND: Third coronavirus disease 2019 (COVID-19) vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and omicron (BA.1) strains from prevaccine up to 1 month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following 2 vaccine doses, humoral immunity was weaker, less functional, and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. One month after the third dose, antibody concentrations and function exceeded post-second-dose levels, and responses in older adults were comparable in magnitude to those in younger adults at this time. Humoral responses against omicron were universally weaker than against the ancestral strain after both the second and third doses. Nevertheless, after 3 doses, anti-omicron responses in older adults reached equivalence to those in younger adults. One month after 3 vaccine doses, the number of chronic health conditions, but not age, was the strongest consistent correlate of weaker humoral responses. CONCLUSIONS: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL